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ABSTRACT~

The influence of surface tension on solitary and cnoidal waves is

discussed. This problem was first considered by Korteweg and de Vries El].

Shinbrot [2] attempted to derive Korteweg and de Vries results by a formal

perturbation expansion. However a part of his results is incorrect. In this

note an approach different from those in [1] and [2] is used to construct a

correct perturbation solution.
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SIGNIFICANCE AND EXPLANATION

In this note we present a perturbation solution for gravity capillary

waves in water of finite depth. The calculation is valid when both the

amplitude of the waves and the depth of the water are small. This problem was

first considered by Korteweg and de Vries (1]. These authors showed that

waves of small amplitude in relatively shallow water can be described

approximately by a nonlinear differential equation. In addition Korteweg and

de Vries obtained periodic solutions of this equation in closed form. They

named these solutions cnoidal waves. Solitary waves are the limit of cnoidal

waves as the wavelength tends to infinity.

*Shinbrot [2] attempted to derive Korteweg and de Vries results by a

formal perturbation expansion. However, a part of his results is incorrect,

because the possibility of a depression solitary wave was excluded by him.

In this note an approach different from those in [1] and [2] is used to

construct a perturbation solution which allows depression waves. The results

obtained agree with those presented by Korteweg and de Vries (2].

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



A NOTE ON SOLITARY AND CNOIDAL WAVES WITH SURFACE TENSION

Jean-Marc Vanden-Broeck and M. C. Shen

1.INTRODUCT~ION

In the present work we discuss the influence of surface tension on

solitary and cnoidal waves. Solitary waves with surface tension were first

considered by Korteweg and de Vries [1]. They showed that depression solitary

waves exist for sufficiently large values of the surface tension. Shinbrot

(2] attempted to study solitary waves with surface tension by a formal

perturbation expansion. However, a part of his results is incorrect, because

the possibility of a depression wave was excluded by him. In this note we use

an approach different from those in (1] , [2] to construct a perturbation

solution which allows depression waves. In addition, the effect of surface

tension on cnoidal waves is also considered. The results obtained agree with

those presented by Korteweg and de Vries [1].

The problem is formulated in Section 2. The perturbation expansion for

solitary waves is derived in Section 3. cnoidal waves with surface tension

are considered in Section 4.

12. FORMULATION OF THE PROBLEM

'K The governing equations for the steady flow of an incompressible inviscid

L fluid of constant density with surface tension in reference to a moving

coordinate system at a constant speed c in the x-direction are the

following:

u* + v* 0, (1)x y

P(uu + v*u*) ' (2)x y x

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant Nos. MCSSOO-1960 and MCS-7927062, Mod. 1.
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P(u*v* + v*v*) - p g P (3)x y y

subject to the boundary conditions

CZ + u* x - v* - 0 at y -*(x) (4)
t x

p*= -T** (1 + C;2) 3/2 at y - ;*(x) (5)
xx x

v* - 0 at y - . (6)

Here (u*,v*) is the velocity, p the constant density, p the pressure,

g the constant gravitational acceleration, y = C* the equation of the free

surface and T* the constant surface tension coefficient. Following Peters

and Stoker ([3]), we use x and the stream function * as independent

*variables, and transform the fluid domain to a fixed horizontal strip in the

x,*-plane. Furthermore, it is also more convenient to use u*, p* and the

so-called stream line function f* as dependent variables, where f*

satisfies *(x,f*) - constant to define a stream line. If we introduce the

nondimensional variables

-x/h, n #/ch, u u*/, v v*/c,

2 2 2f -f*/h, p p*/Pc, Ai-gh/c, T- T/Pgh

where h is the equilibrium fluid depth, (1) to (6) become

- -fnp + fEP_ -f < ( < (7)

uf + u f -- f - p , 0 < n < 1 < (B)

uf1 = 1 , (9)

f - 0, at n 0, -I < < (10)

p - -Tf /(1 + f 2)3/2  at n - 1, - < < (11)

Assume A is close to some critical value I and let

- - A, 0 - (£) 1/2 (12)

then (7) to (11) in terms of a become

uO ="f pa + fapn ( (13)

-2-
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C(ufo + ua~f) " £fq " pfP,1  (14)

ufn -1, (15)

f - 0, at n - 0 , (16)

* p -TCf 0 /(1 + 2) 3/2 at n - 1 • (17)

13. SOLITARY WAVE SOLUTIONS

To solve (13) to (17), we assume

U - u + Cu + C2u + .. (18)

f - f0 + efl + C2f2 + "'" (19)

o 1 2
p = P0 + Cpl + Cp+ "'" (20)

where

0" 1, fo " 1, P0 M -1(i - 1) * (21)

Substitution of (18) to (21) in (13) to (17) will yield a sequence of

equations and boundary conditions for the successive approximations. The

equations for the first approximations are

Ulu- p1 - ifla (22)

S1- ifll - n 0, (23)

Ul + fn 0, (24)

fl(0,0) - 0 , (25)

P1 (O,0) - 0 • (26)

From (21) to (22), we have

f 0. (27)
lann

By integration and making use of (25), we obtain

flu - a;(O)n ,

where al(0) is to be determined. By integration again,

-3-



fl a (W)11 + b (n)

Here we assume that a (0) + 0 as a + - or a (a) is a periodic function

I I-1

with period L and f a1 (O)dO - 0. It follows that
0

fl = a (0)r1 (28)

From (23), (24) and (26), we have

U1 - -al(0) (29)

Pl m [1 - a 1O](n - 1) • (30)

* By substituting (28) to (30) in (22), it is found that

a(O')(t - 1) , 0 . (31)

-' If a;(O) 0 0, then

• " 1 • (32)

The equations for the second approximations are

uW -f p + a;(O)n - a (O)a(0) ( (33)
1: 1:

a;(U)n - al(o) - f " p 211, (34)

12
f + u2- a (a) 0 (35)
M1 2 1()-,(5

f2 (0,0) - 0 , (36)

p 2 "-Ta;(G) at n - 1 , (37)

where (28) to (30) and (32) have been used. As before we find that

f = a (0)r1 - a"(0)1 3/6 " (38)
2 21

2 2
u 2 - -a2(a) + a 1 (0) + a;(O)n /2 (39)

3 2P 2 = -a2 (0)(n - 1) + a- 1) + a;(O)(-T + n /6 - 12/2 + 1/3) . (40)

Substitution of (38) and (40) in (33) yields

(1/3 - T)a"'(0) - a'(O) - 3a.(O)a;() (41)

If we impose the condition a;(o), a;(o) 0 as a + and a;(0) - 0, then

by integration we obtain

1-4-



a (0) - sech2(/2)(1/3 - T) 1 /2  (42)
1

It follows from (19), (21), (28) and (42) that

f, -, h + h1 -A)sech2 (x/2h)[(1 - A)/(1/3 - T)]1/ 2  ( (43)

If T < 1/3 and A C 1, there is a solitary wave of elevation. In this

case, c2 > gh and the solitary wave moves at a supercritical speed. If

T > 1/3 and A 1 1, there is a solitary wave of depression moving at a

subcritical speed units C2 < gh. We may define

a - Ih(1 - AlI

and (43) in terms of a becomes
f h t a sech 2  - T)]/2 (44)

If we consider a periodic solution of (41), then by integration

(1/3 - T)[a( 2)] - -a 1(O) + a2(a) + cla (a) + c2 , (45)

where ci, 02 are two arbitrary constants. The periodic solutions are called

cnoidal waves and will be discussed in the next section. Finally if

T - 1/3, then (41) becomes

a;(*)(1 - 3a1 (O)) - 0 , (46)

and the only possible solution is at(q) - 0.

I.,

I.

14. CNOIDAL WAVE SOLUTION

For a bounded, periodic solution of (45), it is necessary that the right

hand side of (45) must have three real simple zeros, and the solution will

occillate periodically between two of the zeros. Therefore, we rewrite (45)

in the form

2(1/3 - Tl[a(lol] - [hI - a11o3 1 alO1 - h2 1][a 1(o) - y] , (47)

where hI, h2 are the extremum values of a (a) and21

Y 1-h - h 1 (48)
2
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Without loss of generality we shall assume that h, and h2  satisfy the

inequality

(I - T) (I -A(h 1  h) >0

Following Korteweg and de Vries [1) we introduce the parameter X and

write

a( )-hcos2 X + hin 2l. (49)
1 1 2

Substituting (49) into (47), we obtain

.1 - . (50)

* Here B and K are defined by

B 4-1 -3T)1/2

32 hl-h

h -h
K- ( . 52)

h-Y

We take the origin of 0 at a point where al(o) attains the value

h1. Thus integrating (50) we obtain

!- .
0 (1 - K2sinX)l = I,)•13

We can rewrite (53) in terms of Jacobian elliptic functions as
Cos X = cn-5 ( 54)

Substituting (56) into (49) we have

ha () - h +(h 2 )cn2 a (56)P.1 - 2  1 lh 2 .15

Iiit follows from (19), (21), (28) and (55) that

f*"h+ (1-X)hh 2 + (1-A)h(h I- h 2)cn 2 (h1I- y)(1-X)/(1/3 -T)]
/  (56)

• 'i. . i .-"-
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The wavelength L of the wave is given by

L 4h[3(h I - 3T , (57)

wherei:" w/2

( 1 M 0 (1 - K2 *@n2X)1/2dX (58)
0

The determination of the solutin is completed by imposing the condition
L

f0 al(O)d - 0 where the integral is over a wavelength. Using (49), (50)

and (52) we have

- l/ 2 hlcos 2  + h2sin2

0- -- 2

0 (1 - 2sin2X)
1/2

2 E FWl,) + (h1 -IY)Il(K) (59)

Here

w/2

1(K) f f (1 - K sin 11 2dX
0

Hence

YFI (K) + (h1 - Y)I (K) - 0 ( (60)

The eight quantities X, h1 , h2' Y, K, L, T and B are related by the

five equations (48), (51), (52), (57) and (60). If for instance X , L and

T are given the others can be found.

If L =i0 relations (57), (52) (60) and (48) yield K - 1, y - h2 = 0

and h1 - 1. The cnoidal wave reduces then to the solitary wave considered in

Section 3.

PFr infinitesimal amplitude, equation (41) reduces to

(1/3 - T)a(O) - a;() . (61)

The solution is

-7-



-1/2
al(0) - hlcos(T - 1/3) 0 (62)

It follows from (19), (21), (28) and (62) that

x [(1 - 1/2 (3* =h + h111 - X)cos h [1 - ))/(T 1/3)] (63)

If we introduce

K [(1 -AW)/(T 1/3)]1/ 2/h (64)

P! we have

f* - h + hh (1 - ))cos Kx . (65)

Relation (64) can be rewritten as

gh- 1- K 2 (T - 1/3) * (66)
2

c

The dispersion relation of linear sine waves is given by

c = tanh Khtl (- (67)

In the limit as Kh + 0, (67) may be expanded as

2
1 + (T - 1/3)1 2h+ o((682) • (68)

gh

A comparison of (67) and (68) indicates that the cnoidal wave solution

overlaps the classical linear theory in the limit as the amplitude of the

waves tends to zero.
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